UNDERSTAND OXYGEN TRANSPORT AND YOU WILL UNDERSTAND CONGENITAL HEART DISEASE

Physiologic Disturbances in the infant/Newborn

- Inadequate Pulmonary blood flow
 Tetraology of Fallot or Pulmonary Atresia
- Excessive Pulmonary blood flow
 VSD or any Cyanotic CHD with unrestricted
 Pulmonary blood flow
- Inadequate systemic blood flow Aortic Atresia, Critical ASV
- Abnormal Mixing TGA

Concepts of Oxygen Transport

- Definitions: oxygen saturation, oxygen content and oxygen-hemoglobin dissociation curve.
- Systemic oxygen Transport. Effect of Hemoglobin, low systemic or pulmonary blood flow, and lung function.
- The effect of Pulmonary blood flow on **Systemic Oxygen transport** in complete admixture CHD

Concepts of Oxygen Transport

- Relationship between VO₂ and oxygen Delivery
- Systemic responses to inadequate oxygen transport.
- Markers of inadequate oxygen Transport
 ➤ Lactic Acid
 ➤ SVO₂

Oxygen Transport and Congenital Heart Disease

Oxygen Content CaO2
Hemoglobin 1.36ml/100ml x % saturation

Plasma

.003ml/100ml/mmHg or

.3 ml/100ml/100mmHG

Oxygen Delivery Systemic oxygen Transport

Oxygen Delivery (DO₂) ml O2/minute

Cardiac Output x Oxygen Content (CaO_2) L/minute ml O_2 / 100 ml

Oxygen Delivery Importance of hemoglobin

The single best way to increase oxygen
Delivery is to give a blood transfusion.

15gm Hb x 1.36ml x % O2 saturation

20.4 ml/ 100 ml oxygen

10 gm Hb x 1.36ml x % O2 saturation

13.6 ml/100 ml oxygen

33% increase in oxygen Delivery

Importance of Plasma Oxygen content

In the anemic patient dissolved oxygen can be a major component of oxygen content

Alveolar PO2 600Torr

10 gm Hb x 1.36 ml + 1.8 ml/100ml
Dissolved Oxygen 13 %
5 gm Hb x1.36ml + 1.8ml/100ml
Dissolved Oxygen 26%

Response to Inadequate Oxygen Delivery

- Activation of Neurohumoral mechanisms mediated by the sympathetic nervous system which leads to differential vasoconstriction depending on the density of sympathetic innervation. (Kidney, skin, GI tract >muscle. In Brain and Heart almost no vasoconstriction.
- Arterial PO₂ direct control-Vasodilation in response to low Arterial PO₂.
- Renin AngiotensinII aldosterone Arginine Vasopressin axis

Markers of Tissue Oxygenation

- Mixed venous PO₂ or SVO₂ is the single most reliable indicator of tissue hypoxia. O2 diffusion from blood to cell is directly related to the difference between capillary PO₂ and the intracellular PO₂. Capillary PO2 reflects:
 - > Arterial oxygen content
 - ➤ Organ blood flow
 - ➤ Organ oxygen consumption
- · Lactic Acid

Oxygen Transport and Congenital Heart Disease Summary

- Physiological Disturbances are related to abnormalities in Systemic blood flow, pulmonary blood Flow, or mixing.
- Maintaining adequate oxygen capacity (Hemoglobin) is critical.
- Primary response to tissue hypoxia is the sympathetic nervous system.
- Monitoring: Lactic Acid and SVO₂ are useful.

